Spontaneous variability of arterial blood pressure, carbon dioxide and cerebral blood flow in critically ill patients.

Marat Slessarev¹,²*, Ernest R. Greene³, Michael D. Sharpe⁴, Claudio M. Martin¹, James Duffin⁵, Christopher G. Ellis², Christopher W. McIntyre¹,²

¹Department of Medicine, University of Western Ontario, Canada, ²Department of Medical Biophysics, University of Western Ontario, Canada, ³Department of Computer and Mathematical Sciences, New Mexico Highlands University, United States, ⁴Department of Anesthesia and Perioperative Medicine, University of Western Ontario, Canada, ⁵Department of Physiology, University of Toronto, Canada

Submitted to Journal: Frontiers in Medicine
Specialty Section: Intensive Care Medicine and Anesthesiology
Article type: Original Research Article
Manuscript ID: 333137
Received on: 22 Nov 2017
Frontiers website link: www.frontiersin.org

In review
Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

MS was responsible for study design, data acquisition, and initial analysis and data interpretation, as well manuscript first draft, revisions, and final approval. All other authors were responsible for study design, detailed analysis, final interpretation, manuscript revisions, and final approval of the manuscript. All authors accepts full responsibility for all aspects of the work presented in the manuscript.

Keywords

Carbon Dioxide, arterial pressure, cerebral blood flow, cerebral circulation, Cardiac arrest, Sepsis

Abstract

Word count: 195

Purpose: To measure the magnitude of spontaneous variations in arterial blood pressure, CO2 and cerebral blood flow (CBF) as a potential pathophysiologic mechanism contributing to delirium and long-term cognitive impairment in critically ill patients.

Methods: In this prospective observational study, we measured mean arterial blood pressure (MAP), end-tidal CO2, (PETCO2) and middle cerebral artery blood flow velocity (MCAv) as an indicator of global CBF continuously over eight hours in twelve mechanically ventilated patients with sepsis, septic shock or post cardiac arrest

Results: All three parameters varied significantly within and between patients. Within patients, interquartile range (IQR) for MAP varied from 3 to 16 (median 8) mmHg, for CO2 1 to 6 (median 2) mmHg and for MCAv 4 to 27 (median 14) percent relative to baseline, with some patients showing greater variability than others. Between patients, median MAP varied from 66 to 97 (median 78, IQR 12) mmHg, CO2 from 24 to 51 (median 36, IQR 15) mmHg, and MCAv from -24 to 46 (median 1, IQR 5) percent relative to baseline.

Conclusions: Arterial blood pressure, CO2 and CBF vary widely both within and between mechanically ventilated critically ill patients when observed over eight hours.

Funding statement

This study was funded by internal research fund for Program in Critical Care Medicine, Department of Medicine, University of Western Ontario.

Ethics statements

(Authors are required to state the ethical considerations of their study in the manuscript, including for cases where the study was exempt from ethical approval procedures)

Does the study presented in the manuscript involve human or animal subjects: Yes

Please provide the complete ethics statement for your manuscript. Note that the statement will be directly added to the manuscript file for peer-review, and should include the following information:

- Full name of the ethics committee that approved the study
- Consent procedure used for human participants or for animal owners
- Any additional considerations of the study in cases where vulnerable populations were involved, for example minors, persons with disabilities or endangered animal species

As per the Frontiers authors guidelines, you are required to use the following format for statements involving human subjects:
This study was carried out in accordance with the recommendations of 'name of guidelines, name of committee' with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the 'name of committee'.

If the study was exempt from one or more of the above requirements, please provide a statement with the reason for the exemption(s).

Ensure that your statement is phrased in a complete way, with clear and concise sentences.

This study was carried out in accordance with the recommendations of the Office of Human Research Ethics, Western's Research Ethics Boards (REB), with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the Office of Human Research Ethics, Western's Research Ethics Boards (REB).
Spontaneous variability of arterial blood pressure, carbon dioxide and cerebral blood flow in critically ill patients.

Authors: Marat Slessarev MD MSc FRCPC 1,3, Ernest R. Greene PhD 4, Michael D. Sharpe MD FRCPC 2, Claudio M. Martin MD MSc FRCPC 1, James Duffin PhD 5, Christopher G. Ellis PhD 3 and Christopher W. McIntyre MD PhD 1,3

Affiliations:
1Departments of Medicine, 2Anesthesia and Perioperative Medicine, and 3Medical Biophysics, University of Western Ontario, London, ON, Canada
4Department of Computer and Mathematical Sciences, New Mexico Highlands University, Las Vegas, NM, USA
5Department of Physiology, University of Toronto, Toronto, ON, Canada

Conflict of Interest statement: we have no conflict of interest

Financial Disclosure statement: we have no financial conflicts to disclose

Financial support for study: This study was funded by internal research fund for Program in Critical Care Medicine, Department of Medicine, University of Western Ontario.

Corresponding Author:
Dr Marat Slessarev MD MSc FRCPC
Critical Care Western, Department of Medicine, Western University
London Health Sciences Centre, Room D2 521
800 Commissioners Road East, London, ON, N6A 5W9
Phone: (519) 685-8500 Ext. 56440
Email: mslessar@uwo.ca

Word count (main body): 1,912

Word count (abstract): 197
Abstract:

Purpose: To measure the magnitude of spontaneous variations in arterial blood pressure, CO2 and cerebral blood flow (CBF) as a potential pathophysiologic mechanism contributing to delirium and long-term cognitive impairment in critically ill patients.

Methods: In this prospective observational study, we measured mean arterial blood pressure (MAP), end-tidal CO2, (P\text{ET}CO_2) and middle cerebral artery blood flow velocity (MCAv) as an indicator of global CBF continuously over eight hours in twelve mechanically ventilated patients with sepsis, septic shock or post cardiac arrest.

Results: All three parameters varied significantly within and between patients. Within patients, interquartile range (IQR) for MAP varied from 3 to 16 (median 8) mmHg, for CO2 1 to 6 (median 2) mmHg and for MCAv 4 to 27 (median 14) percent relative to baseline, with some patients showing greater variability than others. Between patients, median MAP varied from 66 to 97 (median 78, IQR 12) mmHg, CO2 from 24 to 51 (median 36, IQR 15) mmHg, and MCAv from -24 to 46 (median 1, IQR 5) percent relative to baseline.

Conclusions: Arterial blood pressure, CO2 and CBF vary widely both within and between mechanically ventilated critically ill patients when observed over eight hours.

Keywords: carbon dioxide, arterial pressure, cerebral blood flow, cerebral circulation, cardiac arrest, sepsis
1 Introduction

Delirium (1) and long-term (2) cognitive impairment is a common problem in critically ill patients and survivors of critical illness. In acute settings, delirium is associated with increased mortality and cost of care (1), and often leads to long-term cognitive impairment that is severe (2), affects patients of all ages (2), and places a huge burden on caregivers, families and society (3).

The etiology of both delirium and long-term cognitive impairment is multifactorial, with impairment of cerebral blood flow (CBF) likely playing an important role given high prevalence of ischemic findings in both grey and white matter on neuroimaging studies (4,5), and on autopsy (6,7). Since CBF is exquisitely sensitive to changes in arterial blood pressure and CO\textsubscript{2}, and given that cerebral autoregulation is often impaired in critically ill patients (8–10), we hypothesized that critically ill patients may sustain ischemic or hyperemic injury as a result of adverse CBF changes induced by spontaneous fluctuations in arterial blood pressure and CO\textsubscript{2}.

Since both arterial blood pressure and CO\textsubscript{2} are closely monitored in intensive care units, the aim of this study was to test the biologic plausibility of this hypothesis, by quantifying intra and inter-patient variability in arterial blood pressure, CO\textsubscript{2} and CBF in a cohort of critically ill patients during a typical day in the intensive care unit.

2 Materials and methods

2.1 Study settings and patients

This study was carried out in the intensive care units at two tertiary care teaching hospitals in London, Canada. Institutional Health Science Research Ethics Board approved this study. Written informed consent was obtained from all patients or their substitute decision makers. We screened and enrolled adult (age ≥ 18 years) patients within 48 hours of admission to the intensive care unit with diagnosis of sepsis, septic shock or cardiac arrest. We excluded patients with prior craniotomy/craniectomy, or known cerebrovascular disease.

2.2 Study protocol

Following enrollment, we monitored middle cerebral artery blood flow velocity (MCAv) as an indicator of CBF, mean arterial pressure (MAP) and end-tidal CO\textsubscript{2} (PETCO\textsubscript{2}) continuously for 8 hours while patients lay supine in their bed. Monitoring was only interrupted if the patient needed to be transported from the department (e.g. for imaging studies). Demographic and appropriate patient data were extracted from the medical chart using pre-defined case report forms. Arterial blood gases were drawn at the beginning and the end of the monitoring period.

2.3 CBF monitoring

MCAv was used as an indicator of global CBF. It was monitored in one/both middle cerebral arteries using 2-MHz transcranial Doppler probes (ST3, Spencer Technologies, USA). After adequate signals were attained using standard technique, Doppler probes were fixed in place using a commercially available head harness. Adequacy of MCAv signals was continuously monitored throughout the 8 hours of observation by study
investigators, and probes were readjusted as needed to ensure same angle of insonation and good signal power. Data were recorded continuously at 125 Hz using provided software.

2.4 MAP and PETCO2 monitoring
Arterial pressure was monitored using an indwelling arterial catheter placed into radial, brachial or femoral arteries. CO2 was monitored using continuous in-line capnography module integrated into the ventilator circuit (S/5, Datex-Ohmeda, GE Healthcare, USA). The transduced arterial pressure and expired CO2 were displayed on clinical monitors (S/5, Datex-Ohmeda, GE Healthcare, USA) and continuous waveforms were recorded at 300 Hz on a laptop computer using provided software (S5 collect, Datex-Ohmeda, GE Healthcare, USA).

2.5 Data acquisition, processing and analysis
Continuous MCAv, arterial pressure and CO2 signals were imported into specially developed software (LabView, National Instruments, USA) for offline analysis. Signals were aligned using established time stamps. The entire 8-hr recording was then processed to ensure adequacy of all signals and sections with poor signals (e.g. CO2 and blood pressure calibration artifacts, coughing, movement resulting in poor signals) were excluded from analysis. The software then used custom algorithms to identify end-tidal CO2 and systolic, diastolic and mean arterial pressures and MCAv, which were then checked by investigators to ensure appropriate identification of these values from continuous traces. Inappropriately picked values were manually readjusted or excluded from the analysis (e.g. double end-tidal picking due to ventilator asynchrony). Resulting MCAv, MAP and PETCO2 signals were averaged over 5 second intervals and exported in ASCII format for statistical analysis.

2.6 Statistical analyses
Data were analyzed in Prism 7 (GraphPad, La Jolla, CA, USA). Descriptive statistics were used to report patient demographics and relevant clinical data. We used box plots and data distribution statistics to describe both within and between patient variation in MCAv, MAP and PETCO2.

3 Results
3.1 Patient details
After five patients were excluded due to poor MCAv signal or equipment malfunction, 12 patients were included in the analysis. The mean age of the participants was 61 ± 19 years, nine were male, three had documented history of hypertension and four of obstructive lung disease. Eight patients had sepsis with three of those having septic shock, and four were admitted post cardiac arrest. Median SOFA score on the day of testing was 10 (IQR 5). Mean arterial-endtidal PCO2 difference was 11 ± 7.9 mmHg. Baseline characteristics are summarized in Table 1.

3.2 Variability in measured parameters
There was wide within and between patient variation in MAP, PETCO2 and MCAv over the eight hours of recording (Figure 1). Within patients, IQR for MAP varied from 3 to
Variability in CBF, blood pressure and CO₂ in ICU

Slessarev et al

16 (median 8) mmHg with a range of 13 to 47 (median 30) mmHg. IQR for CO₂ varied from 1 to 6 (median 2) mmHg with a range of 4 to 15 (median 9) mmHg. IQR for MCAv varied from 4 to 27 (median 14) % related to baseline with a range of 21 to 104 (median 48) %. As shown in Figure 2, some patients showed greater variation in all measured parameters over eight hours than others. Some patients also showed wide variation in MCAv and MAP on the background of stable PETCO₂ (patient 11, Figure 3) suggesting impaired autoregulation, while others had minimal variation in MCAv despite wide variation in MAP and stable PETCO₂ (patient 8, Figure 3) suggesting intact autoregulation.

Between patients, median MAP varied from 66 to 97 (median 78, IQR 12) mmHg, minimum MAP from 51 to 87 (median 65, IQR 11) mmHg, and maximum MAP from 71 to 123 (median 95, IQR 18) mmHg. Median PETCO₂ varied from 24 to 51 (median 36, IQR 15) mmHg, minimum PETCO₂ from 17 to 49 (median 31, IQR 15) mmHg and maximum PETCO₂ from 26 to 60 (median 43, IQR 15) mmHg. Compared to baseline, median MCAv varied from -24 to 46 (median 1, IQR 5) %, minimum MCAv from -95 to -5 (median -24, IQR 37) %, maximum MCAv from 7 to 57 (median 17, IQR 14) %.

4 Discussion

Our results confirm wide within and between variation in arterial blood pressure, CO₂ and CBF in ventilated critically ill patients over eight hours of observation. This variability occurs despite close monitoring and control of arterial blood pressure and CO₂ in the intensive care unit. Some patients had wider range of within-patient variation in measured parameters than others (Figure 2), and in some patients the wide variation in arterial blood pressure was associated with wide perturbation in CBF suggesting impaired autoregulation (Figure 3).

This clinical significance of the observed CBF variation in ventilated critically ill patients is presently unknown. However, given high prevalence of ischemic findings in both grey and white matter on neuroimaging studies (4,5) and autopsy (6,7), coupled with commonly impaired cerebral autoregulation (8–10) in critically ill patients, the observed excursions of CBF due to spontaneous variations in arterial blood pressure and CO₂ provide a plausible biologic mechanism that may contribute to pathophysiology of delirium and long-term cognitive impairment in these patients.

The proposed mechanism is similar to that seen in chronic hemodialysis patients, who develop structural white matter brain injury with associated proportional cognitive impairment as a result of cumulative dialysis-induced hemodynamic stress within one year of starting dialysis (11). Interestingly, reduction of hemodynamic stress (via cooling of dialysate) exhibited complete protection against white matter injury (11), suggesting that interventions aimed at reducing hemodynamic instability may offer neuroprotection in the critically ill.

In view of hemodialysis studies, heterogeneity in the magnitude of arterial blood pressure, CO₂ and CBF variations between patients (Figure 2) is an important observation, since hemodynamic stress and consequent ischemic and/or hyperemic brain
injury may potentially be related to magnitude and cumulative duration of these variations. However, this requires further exploration with dedicated studies.

Another important observation from this study was the heterogeneity of CBF-MAP relationship between patients, with some showing large variations in MAP and CBF (suggesting impaired autoregulation), while others showing stable CBF despite large MAP changes (suggesting intact autoregulation, Figure 3). While our sample size was too small to determine any independent predictors of these differences based on patient characteristics, this observation may explain why some studies of critically ill show impaired cerebral autoregulation (8–10), while others show intact autoregulation (12,13), and highlights the need to consider autoregulation status in individual patients when prescribing MAP targets (14).

4.1 Study limitations
We used transcranial Doppler to measure MCAv as an estimate of global CBF. MCAv is proportional to CBF as long as the diameter of the insonated vessel remains constant. Previous research (15,16) indicates that MCAv is a reliable and valid index of global CBF when compared against MRI (17), although recent studies suggest that this assumption may be violated at the extremes of hypercapnia (18). Furthermore, transcranial Doppler only measures global CBF and provides no information about regional changes in CBF that can be gained from advanced imaging modalities such as MRI. However, it does have the advantage of that it can be used at the bedside in the ICU avoiding transport of unstable critically ill patients to the MRI, which is both risky and cumbersome.

We used PETCO₂ for continuous estimate of arterial PCO₂, and compared PETCO₂ values with arterial PCO₂ at the start and at the end of the experiment to estimate arterial-end tidal PCO₂ difference. In our cohort the mean arterial-endtidal PCO₂ difference (11 ± 7.9 mmHg) was larger than that observed in previous cohort studies of critically ill patients (4.0 ± 0.97 mm Hg) (19). PETCO₂ is known to deviate from PaCO₂, especially in patients with lung disease (20). Five of our patients had documented history of lung disease (4 obstructive, 1 restrictive). The advantage of using PETCO₂ is that it can be recorded continuously, but it should always be compared to corresponding arterial PCO₂ values as was done in this study. Our study sample size was too small to explore potential association between observed variability in CBF, MAP and PETCO₂ and clinical outcomes.

4.2 Future directions
Future properly powered studies should determine whether the observed variability in CBF due to spontaneous variation in arterial blood pressure and CO₂, when accumulated over time, leads to structural brain injury, delirium or long-term cognitive impairment in critically ill patients. Additional studies can then explore whether interventions aimed at reducing this CBF variability abrogate structural brain injury and improve cognitive outcomes.
5 Conclusions

CBF, arterial blood pressure and CO2 vary significantly within and between mechanically ventilated critically ill patients. Detailed study of these variations is an important and novel entity that may uncover mechanism responsible for ICU-associa
t brain injury, and provide previously unconsidered therapeutic targets for improvement of long-term cognitive outcomes in critical illness survivors.

Acknowledgements: The authors would like to thank, Fran Priestap for helping with statistical analysis. Dr Marat Slessarev would like to acknowledge the Resident Research Career Development Fund award (Schulich School of Medicine & Dentistry), Ontario Graduate Scholarship and Vanier Canada Graduate Scholarships for supporting his PhD graduate studies.
References:

Figure captions:

Figure 1: Box-plot graphs showing variability of mean MCAv (expressed in % changes is signal from baseline), MAP and P\textsubscript{ET}CO\textsubscript{2} in individual patients over 8 hours of observation. Cardiac arrest patients (01-04) are represented in red and sepsis/septic shock patients (05-12) are shown in blue. Note significant *within* and *between* patient variability in all measured parameters. Small dots represent outlier values.

Figure 2: Continuous and respective box-plot graphs of mean MCAv, MAP and P\textsubscript{ET}CO\textsubscript{2} variation over eight hours from two patients illustrating low (Patient 01) and high (Patient 06) *within* patient variability in measured parameters.

Figure 3: Continuous and respective box-plot graphs of mean MCAv, MAP and P\textsubscript{ET}CO\textsubscript{2} variability over eight hours from two patients illustrating presumably *intact* (Patient 08 - significant variability in MAP with minimal MCAv variability) and *impaired* (Patient 11 – significant corresponding variability in MAP and MCAv) autoregulation.
Table 1: Baseline Patient Characteristics

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>12</td>
</tr>
<tr>
<td>Age (years)</td>
<td>61 ± 19</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>9 : 3</td>
</tr>
<tr>
<td>MODS score (ICU admission)</td>
<td>6 (IQR 3)</td>
</tr>
<tr>
<td>NEMS score (study day)</td>
<td>39 (IQR 11)</td>
</tr>
<tr>
<td>SOFA score (study day)</td>
<td>10 (IQR 5)</td>
</tr>
<tr>
<td>Arterial-end-tidal PCO$_2$ difference (mmHg)</td>
<td>11 ± 7.9</td>
</tr>
</tbody>
</table>

Admission Diagnosis

- Sepsis: 5
- Septic shock: 3
- Cardiac arrest: 4

Ventilation mode

- Spontaneous: 4
- Controlled: 8

Comorbidities

- Hypertension: 3
- Coronary artery disease: 3
- Congestive heart failure: 3
- Atrial fibrillation: 2
- Diabetes: 2
- Dyslipidemia: 2
- COPD or Asthma: 4
- Interstitial lung disease: 1

Data are reported as absolute numbers, mean ± SD, or median (interquartile range).
Figure 2

PATIENT 01

CONTINUOUS DATA

mean MCAv (% Δ from baseline)

MAP (mmHg)

PetCO2 (mmHg)

Time (hrs)

PATIENT 06

CONTINUOUS DATA

BOXPLOT

BOXPLOT

In review
Figure 3.TIFF

PATIENT 08

CONTINUOUS DATA

BOXPLOT

PATIENT 11

CONTINUOUS DATA

BOXPLOT

mean MCAv
(% Δ from baseline)

MAP (mmHg)

PetCO2 (mmHg)

Time (hrs)